

Beam-beam studies for eRHIC

Simulations to confirm / verify new beam-beam related design parameters

- 1) crossing angle from 22mrad to 25mrad
- 2) proton ring harmonic number from 360 to 315
- 3) bunch filling pattern and long-range BB 4) proton crab cavity frequency choosing

Pre-CDR writing and update

- 1) re-did all strong-strong simulation with version 6.1 parameters
- 2) added new results of weak-strong simulation with crabbed collision

Beam dynamics with crabbed beam-beam interaction

- 1) determined particle stability with different longitudinal amplitudes
- 2) diffusion rate calculation 3) synchro-betatron resonance
- 4) proton / electron tune scans 5) effects of artificial static and random noises

Simulation methods and algorithms

- 1) consolidate weak-strong simulation method
- 2) modified weak-strong simulation 3) converted BBSS to MPI code
- 4) dependences of numerical noises in strong-strong simulation

FOA Lab 18-1848 project: Development and test of simulation tools for EIC BBI

- 1) implemented nonlinear truncated Taylor map tracking and symplectic tracking methods
- 2) implemented new Poisson solver into BB3D: spectral method

Machine and beam parameters

eRHIC schematic layout

V6.1 beam-beam related parameters

Parameter	proton	electron
Ring circumference [m]	3833.8451	
Particle energy [GeV]	275	10
Lorentz energy factor γ	293.1	19569.5
Bunch population [10 ¹¹]	1.04	3.44
RMS emittance (H,V) [nm]	(16.1, 8.5)	(20.0, 4.9)
β^* at IP (H, V) [cm]	(90, 5.9)	(72, 10.2)
RMS bunch size σ^* at IP (H, V) [μ m]	(120, 22)	
RMS bunch length σ_l at IP [cm]	7	2.0
RMS energy spread $[10^{-4}]$	6.6	5.5
Transverse tunes (H,V)	(0.310, 0.305)	(51.08, 48.06)
Synchrotron tune	0.01	0.069
Longitudinal radiation damping time [turn]	-	2000
Transverse radiation damping time [turn]	-	4000

- The protons and electrons collide at IP6 and IP8. Each proton bunch only collides a particular electron bunch once a turn.
- The H/V beam-beam parameters for proton is 0.015/0.005. The H/V beam-beam parameters for electron are 0.10/0.76.

Beam-beam with crabbed collision

- To compensate the luminosity loss with a crossing angle 25 mrad, crab cavities are used for both rings.
- Due to finite wave length of crab cavities, protons in the bunch head and tail are not perfectly crabbed. Beam-beam interaction may generate synchrobetatron resonance and/or even head-tail instability.

25mrad full crossing angle

394MHz CC used in this example

Simulation methods and algorithms

Weak-strong Simulation

One bunch is treated as rigid bunch, another represented by macro-particles. Analytical beambeam force is applied.

Codes: SimTrack

Strong-strong simulation

Both bunches are treated by macro-particles. Need Poisson solver to solve beam-beam force.

Codes: BeamBeam3D, BBSS, **SimTrack**

Proton crab cavity frequency choosing

- LHC-HL adopts 400MHz CC. Technically it is preferable for eRHIC to choose 394MHz CC for both rings so that we can benefit from CERN's experiences.
- However, both weak-strong and strong-strong simulations showed that 394MHz
 CC in the proton ring gives much larger emittance growth than that with 197MHz.

Combination of high RF harmonics

- 197 MHz CC needs more R&D than 394MHz, and its size is much larger. Another thought is to have 394MHz and its higher harmonic cavities.
- Both weak-strong and strong-strong simulations showed that to reach the same level of emittance growth rates with 197MHz alone, up to 4th harmonics CC are needed (394, 788,1182, 1576MHz).

Weak-strong simulation results

	$\Delta \sigma_x$	$\Delta \sigma_y$	ΛI.
Case	$\frac{\Delta \sigma_x}{\sigma_x}$	$\frac{g}{\sigma_y}$	$rac{\Delta L}{L}$
(0.310, 0.305):			
197	(-2.0 + /-3.2)%/h	(27.7 + /-9.1)%/h	(-7.6 + /-3.9)%/h
394	(9.0 + / -10.3)%/h	(18.0 + /-11.0)%/h	(-6.7 + / -3.2)%/h
394/788	(173.1 + /-27.3)%/h	(1607.2 + /-81.6)%/h	(-333.1 + /-13.0)%/h
394/788/1182	(2.0 + /-10.0)%/h	(69.8 + /-17.)%/h1	(-17.2 + /-3.2)%/h
394/788/1182/1576	(-1.5 + / -3.3)%/h	(8.3 + / - 4.4)%/h	(-1.0 + / -1.1)%/h
(0.228, 0.224):			
197	(0.4/-1.6)%/h	(2.0 + / -3.8)%/h	(-0.6 + / -0.9)%/h
394	(23.1 + / -13.3)%/h	(66.0 + /-19.7)%/h	(-9.3 + / -3.0)%/h
394/788	(31.9 + /-17.8)%/h	(47.8 + / -7.2)%/h	(-6.3 + / -2.8)%/h
394/788/1182	(-1.8 + / -2.5)%/h	(3.8 + / -1.8)%/h	(-0.5 + /-0.7)%/h
394/788/1182/1576	(0.24 + / -1.4)%/h	(-0.32 + / -1.2)%/h	(0.08 + / -0.6)%/h
(0.180, 0.175):			
197	(1.4+/-2.1)%/h	(6.8 + / -5.7)%/h	(-1.0 + / -0.7)%/h
394	(1.3 + / - 4.8)%/h	(136.1 + / -38.0)%/h	(-15.1 + / -3.0)%/h
394/788	(14.7 + /-9.7)%/h	(140.4 + / -18.6)%/h	(-18.1 + / -2.4)%/h
394/788/1182	(2.0+/-1.7)%/h	(42.8 + / -15.4)%/h	(-4.7 + / -1.3)%/h
394/788/1182/1576	(-0.4+/-4.0)%/h	(14.2 + / -11.5)%/h	(-1.6 + /-0.5)%/h

Combining 197 and 394 MHz

- A second thought: do we still need 394MHz besides 197MHz crab cavities for the proton ring? In principle, combining both will reduce beam size growth rates.
- Both weak-strong-strong simulations showed that 197+397 MHz CC can improve the beam size growth rates by a factor of 2-3.
- In the present design, installation space for 397MHz is reserved.

weak-strong simulation results

	Lumi (%/hour)	Sigmax (%/hour)	Sigmay (%/hour)
Single frequency 197MHz Only : 394MHz Only :	-0.5+/-1.5 -11.3+/-1.5	3.4+/-5.9 43.3+/-24.1	0.3+/-6.1 64.1+/-24.4
combined both (1.1, -0.1): (1.2, -0.2): (1.3, -0.3): (1.4, -0.4): (1.5, -0.5):	-0.8+/-1.1 0.1+/-0.5 -0.01+/-0.6 0.1+/-0.3 -0.4+/-0.2	-0.002+/-2.8 1.3+/-1.8 -0.9+/-1.9 0.1+/-0.9 -0.6+/-2.7	1.9+/-4.6 -1.3+/-4.6 1.0+/-3.4 -0.05+/-2.1 2.7+/-1.7

Head-on and linearly crabbed collisions

With perfect artificial linear crabbing, the same emittance growth rates and luminosity degradation rate are observed as those with head-on collision case. Therefore, the exact emittance growth is linked to crabbing.

Linear crabbing:

proton horizontal RMS beam size [um]

$$\Delta p_x = -Kz
\Delta \delta = -Kx
K = \tan(\theta)/\sqrt{\beta^* \beta_{cc}}$$

From strong-strong simulation

Which particles contribute emittance growth with crabbed collision

Both weak-strong and strong-strong simulations proved that protons in the bunch tails have a larger amplitude growth rate than those at bunch center.

BB introduces synchro-betatron resonances with crabbed collision

- Strong-strong simulation: from spectrum of proton horizontal motion, peaks at multiples of proton longitudinal tunes are visible, while they are missing in the head-on collision.
- Also in strong-strong simulation, test particles with different initial longitudinal action are launched. The spectrum of their horizontal motion shows synchrobetatron resonances too.

Both plots are from strong-strong simulation

Dependences of emittance growth rates

- Dependences of emittance growth were studied: bunch intensities, crossing angle, bunch length, crab cavity frequency, proton longitudinal tune, proton transverse tunes, electron transverse tunes, and so on.
- The goal of parameter scan is to find an optimum parameter setting to achieve minimum beam size growth rates.

Example: proton tune scan

Incoherent and coherent effects

- There are about order of 2 difference in the calculated beam size growth rates between weak-strong and strong-strong beam-beam simulation.
- We would like to know what is the main cause for beam size growth: incoherent effect, coherent effect, or both.
- One approach is: modified weak-strong simulation. Weak-strong tracking with equilibrium electron beam positions and sizes from strong-strong.

 Equilibrium position and sizes of electron bunch

13

Summary & Outlook

- ☐ Progresses made in all fronts of beam-beam simulation study for eRHIC in last year.
- ■We did enormous simulations to verify related eRHIC design parameters and updated pre-CDR.
- ☐ Had much deeper understanding of the physics behind the emittance growth with crabbed collision.
- □Implemented new simulation algorithms and developed new simulation codes.
- □Continue working on separating real beam size growth from numeric noises. Continue working on beam size growth mechanism.